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ABSTRACT
Battery-based energy storage has emerged as an enabling tech-

nology for a variety of grid energy optimizations, such as peak

shaving and cost arbitrage. A key component of battery-driven

peak shaving optimizations is peak forecasting, which predicts the

hours of the day that see the greatest demand. While there has been

significant prior work on load forecasting, we argue that the prob-

lem of predicting periods where the demand peaks for individual

consumers or micro-grids is more challenging than forecasting load

at a grid scale. We propose a new model for peak forecasting, based

on deep learning, that predicts the k hours of each day with the

highest and lowest demand. We evaluate our approach using a two

year trace from a real micro-grid of 156 buildings and show that it

outperforms the state of the art load forecasting techniques adapted

for peak predictions by 11-32%. When used for battery-based peak

shaving, our model yields annual savings of $496,320 for a 4 MWhr

battery for this micro-grid.
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1 INTRODUCTION
Energy storage has emerged as a key enabling technology for vari-

ous grid and energy optimizations such as peak load shaving and

energy cost arbitrage. Energy storage is also becoming popular for

smoothing energy generation from intermittent sources such as
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solar and wind. The cost of battery-based storage has been declin-

ing steadily over the years, and the penetration of battery storage,

while still nascent, is poised to grow sharply in the coming years.

Battery-based storage is particularly attractive for large energy

consumers such as commercial and industrial customers or micro-

grids. Unlike the majority of residential consumers that pay a flat

rate for electricity, such customers pay demand charges, which

is effectively a surcharge based on their peak usage. The use of

batteries to flatten the energy consumption during peak demand

hours can be an effective mechanism for reducing these demand

charges. For example, our campus micro-grid has recently deployed

a 4 MWhr battery for the sole purpose of peak load reduction and

the incurred demand charges.

An essential ingredient of any peak load shaving technique is

the prediction of when the peak demand will occur each day so

that the battery can be operated during those hours to reduce the

peak power draw from the grid. We refer to this problem as peak
forecasting, which is related to, but distinct from, the problem of

load forecasting. Load forecasting is a well studied problem in the

literature [6, 10, 15–17, 22, 25] and involves predicting a time se-

ries of future demand using past history and parameters such as

weather. In contrast, peak forecasting is concerned with predicting

specific hours of the day when the demand will peak. We note

that any load forecasting method can be trivially modified for peak

forecasting by first predicting a time series of the demand and then

sorting the demand to determine the top-k peak hours over the pre-

diction window. However, we argue that load forecasting methods

were designed for grid-level predictions where the demand varies

smoothly. Peak forecasting is applied to individual consumers, or

micro-grids, where the daily demand exhibits higher variations.

Conventional load forecasting may be less sensitive to peaks in

demand, while a peak forecasting method that is solely concerned

with determining peak demand periods, rather than detailed pre-

dictions of a time-series of demand, maybe more effective.

Motivated by these observations, in this paper, we present a

new peak forecasting technique that is designed for predicting the

top-k and bottom-k high and low demand hours for each day. Our

predictionmodel is based on a deep learning-based Long Short Term

Memory (LSTM) approach that is tailored for micro-grids or large

commercial customers that exhibit higher stochasticity in their

demand than grid-scale demand variations. Such a model can be

directly used for battery control and peak shaving by operating the

battery during the predicted top-k hours and charging the battery
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during the bottom-k off-peak hours. In designing our approach, we

make the following contributions.

First, we formulate the problem of peak forecasting and present

an LSTM model tailored for predicting the k high and low demand

periods during each day for any configurable k . Second, we com-

pare our approach with state of the art load forecasting approaches,

suitably adapted for peak forecasting, using a two-year-long de-

mand trace from our campus microgrid comprising 150 buildings.

Our results show that our approach can outperform the state of

the art methods by 11-32%. We conduct a case study of a campus

micro-grid comprising a 4MWhr battery where we apply our model

for battery control to perform peak shaving and show annual en-

ergy savings of $496,320. Finally, we implement our approach on a

Raspberry Pi to demonstrate its feasibility of running in embedded

battery controllers for autonomous operations and also provide an

open-source implementation of our model as a library.

2 BACKGROUND
Our work focuses on larger energy consumers such as office or

university campuses, shopping malls, convention centers, or manu-

facturing facilities. We assume that such customers are subjected to

demand charges, also known as peak surcharges, that is a surcharge

paid on the monthly electricity bill based on the peak usage of that

customer. As a result, the customer is financially motivated to flat-

ten the peak usage as much as possible—the smoother the demand,

the lower the peak charge. With the emergence of battery-based

storage technologies, it has become feasible to reduce the grid-

observed peak demand without actually changing the underlying

consumption patterns. This is done by operating the battery during

the peak demand to absorb a portion, or all, of the peak. Our work

assumes that customers who wish to employ such optimizations

have deployed battery-based storage of a certain known capacity.

Past work on using batteries for grid energy optimizations falls

broadly into two categories: energy arbitrate and peak shaving.

When customers are subjected to the time of use (TOU) pricing,

with different prices during pre-defined peak and off-peak periods,

batteries enable energy to arbitrate where the battery charges dur-

ing cheaper off-peak hours and discharges during peak hours to

reduce bills. Past work has cast this problem as an optimization

problem where load forecasting is used to estimate future demand

and the optimization determines the optimal amount of charging or

discharging to maximize savings. Peak shaving [2, 3, 20, 21, 24] is

a different type of energy optimization that is designed to address

peak demand charges—in this case, the customer needs to predict

when their demand is likely to peak, and operate the battery during

this period to “clip” the peak. In this case, it is more critical to deter-

mine when the local demand from the customer will peak during

each day, a problem we refer to as peak forecasting. As noted earlier,

the problem of peak forecasting is a related but distinct problem

from load forecasting—in the former, we need to predict the top-k

hours when demand will be the greatest, while in the latter, we

need to predict a time-series of estimated demand.

Load forecasting is a well-studied problem with many decades of

research. Past work in the area falls into two broad categories: use

of time series forecasting methods [8, 19, 23] and, more recently,

use of neural nets and deep learning methods [7, 18, 22]. Regardless
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Figure 1: LSTM based demand predictor

of the method, all load forecasting techniques use past history

and parameters such as weather to estimate future demand. Load

forecasting methods are known to be very accurate for predicting

grid-scale demand where the variations are ”smooth” but have

higher errors when predicting demand for individual consumers

where demand has higher stochasticity.

Peak forecasting [4, 5] is less well studied than load forecast-

ing. The problem was studied in [14] with the goal of predicting

the top-5 peak days in each year for the region of Ontario [13];

we seek to perform peak forecasting at the shorter time-scale of

hours, which is more challenging since hourly individual demand

has higher variations than aggregated daily grid demand. As men-

tioned earlier, one baseline approach is to take any load forecasting

approach and trivially modify it for peak forecasting by sorting

the predicted time series and choosing the top-k hours. As we will

show experimentally, such an approach can yield higher errors.

3 PEAK FORECASTING MODEL
In this section, we present our model for peak forecasting.

3.1 Peak Forecasting using LSTM
The main objective of the peak forecasting model is to predict the

top-k and bottom-k hours of daily demand. Figure 1 shows the

architecture diagram of our model. Our model has 2 main modules

the Feature Extractor and Peak Predictor.
Feature Extractor : We use the historic demand as the input

to the model along with few engineered features to improve the

accuracy of the model. We add deterministic influencers such as

holidays, the hour of the day, season type (Fall, Winter, Spring,

Summer), holidays and exogenous influencers such as weather

and humidity to improve the accuracy of our model. We encode all

influencer features using OneHot Encoding, a method of converting

categorical variables to vector form and normalize the historic

hourly demand. Then, the one hot encoded features and normalized

historic demand are concatenated and fed as input to the peak

predictor.

Peak Predictor : The peak predictor is a stack of 4-layer Long

Short Term Memory(LSTM), which is a variant of a Recurring

Neural Network (RNN) and a Min-Max Layer. The objective of the

peak predictor is to predict the top-k and bottom-k hours over the

next 24 hours given the historic hourly demand for the past 2 days

along with other engineered features. To predict the hourly demand
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we use a variant of a Recurring Neural Network (RNN) called LSTM

(Long Short Term Memory) since it is well known that an LSTM

[11, 12] shows superior performance in learning sequential and

long term dependencies in data.

As shown in [9], grid demand displays a high degree of temporal

correlations along with sequential dependency. RNNs have been

shown to capture the sequential dependencies very well. However,

as the sequence length increases, long term dependencies can be

lost due to the vanishing gradient problem [11]. To overcome this,

we follow previous work and use the Long Short Term Memory

(LSTM) variant of RNN [12] in our LSTM based demand prediction

model. The LSTM incorporates three additional matrices inside the

recurrence which act as a gating mechanism, selectively allowing

information flow from previous timesteps as a function of the cur-

rent timestep. The gates ft , it and ot are defined as functions of

the input xt and previous hidden representation ht−1 as follows.

ft = σд(Wf xt +Uf ht−1 + bf ) (1)

it = σд(Wixt +Uiht−1 + bi ) (2)

ot = σд(Woxt +Uoht−1 + bo ) (3)

Here, matricesW andU and bias vectors b are all model parame-

ters learned through supervised training. σд denotes the sigmoid

activation function, which normalizes the outputs to have values in

[0, 1]. These representations are combined to produce the hidden

representation ht as follows:

ct = ft ◦ ct−1 + it ◦ σc (Wcxt +Ucht−1 + bc ) (4)

ht = ot ◦ σh (ct ) (5)

where ◦ denotes element-wise vector multiplication. Activations σc
and σh use the tanh function to normalize outputs into the range

[-1, 1], following previous work.

The final layer of our model is a min-max layer that labels each

hour as T (if it is a top-k hour), B (if it is a bottom-k hour), or N (for

neither). As shown in Figure 1, our models can optionally output

the predicted hourly demand (load forecast) in addition to the top-k

and bottom-k hour labels.

3.2 Applying the Model for Battery Control
Our peak forecasting model can then be used for battery-based

peak shaving. For example, the model output can be used to di-

rectly control the battery, where the battery discharges during the

top-k hours and charges back to full in the bottom-k hours. Model

predictions can also be incorporated into more sophisticated bat-

tery control algorithms that incorporate solar renewables, battery

lifetime, and other factors for energy optimizations.

4 EVALUATION
In this section, we experimentally evaluate our model using a real

2-year demand trace from a campus micro-grid of 156 buildings.

The trace sees a temperature range of -9.5F to 97F and demand

variations between 9,934 kW to 26,219 kW. For our evaluation, we

use two LSTM models, a 2 layer model and a 4 layer model that we

implement using Keras with TensorFlow [1] backend. The 2 layer

NN has 100 and 80 neurons, while 4 layer NN has 100, 90, 80, and 70

neurons in the hidden layers ordered from lower to the upper layer.

A grid search was performed for the selection of hyper-parameters.

For training, we use Adam optimizer with an adaptive learning rate

of 0.1 to 0.005 with 0.2 drop out.

For the purpose of comparison, we use 4 load forecasting models

that we adapt for peak forecasting by sorting their outputs and

choosing the top and bottom k values. We use a linear regression

model as baseline and two state-of-the-art load forecasting models

Custom ARIMA [16], and Artificial Neural Network (ANN) model.

We tune the ANN hyper-parameters using grid-search and train all

models using the same campus microgrid dataset.

Model MAPE

LSTM-2 Layer 4.1

LSTM-4 Layer 3.7

Linear Regression 5.9

ANN 3.8

ARIMA 5.0

Table 1: Demand Pre-
diction Accuracy

Jan16 Jun16 Jan17 Jun17 Jan18 Jun18

Figure 2: Dataset temperature
range and variance

4.1 Baseline Evaluation
Although our focus is on peak forecasting, we first compare the

Mean Absolute Percentage Error (MAPE) of all approaches for

predicting the demand time series. As shown in Table 1 we find that

our 4-layer LSTM model has the least MAPE and outperforms even

state of the art load forecasting approaches. The ANN approach,

with aMAPE of 3.8, is a close second, while linear regression has the

highest error. Minor improvements in MAPE score has a significant

impact on peak prediction, which results in substantial cost savings.

Top-3 Hours

Bottom-3 Hours

Top-4 Hours

Bottom-4 Hours

Bottom-4 Hours

(a) (b)

Figure 3: Sample peak forecasts for (a)uni-modal demand
peak and (b) bi-modal demand peak.

4.2 Peak Predictions
Next, we show the sample output of our LSTMmodel for forecasting

top and bottom-k hours. Figure 3 show the campus micro-grid

demand on two different days and shows the labeled top-k and

bottom-k hours in each day. Note that some days can be unimodal

where the top/bottom k hours occur contiguously, while other days

can be bimodal where these hours are non-contiguous. Our model

can handle both scenarios, as shown.

4.3 Peak Forecast Accuracy
Next, we compare the peak forecasting accuracy of various models.

Tables 2 and 3 show the accuracy of various approaches for pre-

dicting the top-k and bottom-k hours of each day, respectively, for

various values of k . We evaluate model accuracy as the percentage

of the correct number of peak hours captured by each model.
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Model 1 2 3 4 5

LSTM-2 Layer 16% 26% 74% 79% 84%

LSTM-4 Layer 47% 74% 89% 95% 100%
Linear Regression 42% 68% 84% 89% 100%

ANN (SOTA) 26% 42% 53% 63% 79%

Custom ARIMA [16] 42% 63% 74% 84% 95%

Table 2: Top-k peak prediction accuracy, k range 1 to 5

Model 1 2 3 4 5

LSTM-2 Layer 42% 50% 58% 75% 92%

LSTM-4 Layer 42% 50% 67% 83% 92%
Linear Regression 33% 42% 50% 58% 67%

ANN (SOTA) 25% 58% 67% 75% 83%

Custom ARIMA [16] 33% 42% 50% 83% 92%

Table 3: Bottom-k Peak prediction accuracy, k range 1 to 5

First, we observe that the accuracy is lower for small values of

k since the chances of making mistakes is higher for small k (e.g.,

if the top two hours are close to one another, for k = 1, a model

may choose the wrong hour due to prediction error). The accuracy

of all approaches increases with a higher k since each approach

only needs to find all hours in the top k regardless of the order. The

table shows that the 4 layer LSTM approach outperforms all other

approaches. For k ≥ 4, it yields an accuracy of 95% and 100%, respec-

tively. For k = 1, its accuracy is only 47% but it is still greater than

all other approaches. Overall, it has 11-32% better accuracy than the

state of the art ANN and Custom ARIMA approaches. Interestingly,

linear regression performs quite well despite its simplicity and is

able to outperform ANN and custom ARIMA for top-k predictions.

Table 3 shows bottom-k prediction accuracy. Note that top-k

forecasts are more critical than bottom-k predictions since an er-

ror in top-forecasts directly impacts incurred the demand charges,

while error in bottom-k forecast implies that the battery may charge

in different hours than the true bottom and we can tolerate more

errors in bottom k predictions. Again, 4 layer LSTM approach out-

performs all other approaches. However, its accuracy is slightly

lower than when making top-k forecasts. The accuracy of all meth-

ods increases for higher values of k , like before. However, the two
states of the art methods and the linear regression have much lower

accuracy than our LSTM models.

4.4 Prototype Implementation and Efficiency
We have implemented a full prototype of our peak forecasting

model. One of the goals of our work is to develop compact, efficient

models that can be deployed and executed on embedded processors

that are common in the battery control system—with the goal of

using the models to drive autonomous operation of batteries for

peak shaving. Our 4 layer model has a memory footprint of 300KB,

while the 2 layer model has footprint 150KB, which allows them

to fit into low-end devices with small amounts of RAM. We ran

both models on a Raspberry PI 3 device running 32-bit Linux and

measured the execution latency. Both are able to predict the top

and bottom 5 peaks of an entire day in less than 1.8 seconds. We

have released our model as an open-source library on GitHub:

http://github.com/umassos/peak-prediction
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Figure 4: Battery payback and savings for varying battery
sizes

5 PEAK SHAVING CASE STUDY
Finally, we present a case study to evaluate the efficacy of our peak

forecasting for peak shaving. To do so, we assume that the model

peak predictions are used to directly drive the battery charging and

discharging. To evaluate the overall cost efficacy of our approach,

we consider various battery sizes (1MWhr, 2MWhr, 4MWhr). For

each battery size, we compute the savings over a period of k hours

per day, where k ∈ {1,2,3,4,5} represents the number of hours of

battery discharge operation per day. Since the model captures

all peaks at k=5 we compute the savings till k=5. The per-hour

battery discharge (BD) for a specific value of k is assumed to be

Battery_Capacity
k .

Our campus has recently installed a 4MWhr battery for peak

shaving. The local utility company imposes a $22/kW demand

charge for usage during peak hours. The cost of a 4MWhr battery

installed is approximately $800,000, with a unit cost of $200/kWhr.

Figure 4 shows the computed savings in demand charges for all 3

battery sizes. We find that k=1 gives us the best savings and payback

irrespective of the battery size. The model accuracy in predicting

the peak increases with increasing values of k. So, model accuracy

is higher for k=2 than k=1 but as k increases the battery discharge

per hour reduces. This drop in battery discharge offsets the cost

savings substantially as k becomes greater than 2 resulting in a

drop in the savings. The figure shows annual savings of $496,320

for a 4 MWhr battery for k = 1 and annual savings of nearly

$200,000 for k = 5. Overall the figure shows the efficacy of our peak

forecasting approach for extracting real-world savings by shaving

peak demand. Based on this case study and the above experiments,

we are deploying of our model for the day-to-day control of the

campus battery for peak shaving.

6 CONCLUSIONS
In this paper, we presented a peak forecasting model for battery-

based peak shaving. Our deep learning-based model predicts the

top and bottom-k hours of each day, which can then be used to

control a battery for peak shaving. We showed that our approach

outperforms the state of the art load forecasting techniques adapted

for peak predictions by 11-32%. When used for battery-based peak

shaving, our model yields annual savings of $496,320 for a 4 MWhr

battery for a campus micro-grid.
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